Nezbytnost třetí měřící svorky, tzv. ochranného terminálu při testování izolace

Tisk
Hodnocení uživatelů: / 0
NejhoršíNejlepší 
Čtvrtek, 17. březen 2022

Obrázek 1 Měření izolačního odporu přístrojem Megger MIT1025Měření izolačního odporu je jedním z nejpoužívanějších testů v elektrické síti. Pro dosažení spolehlivých výsledků je nezbytné použít 3vodičovou sadu měřících kabelů s ochranným terminálem, tzv. GUARD svorkou. Podíváme se na to, proč tomu tak je a prozkoumáme často opomíjený přínos ochranného terminálu.

Obrázek 1  Měření izolačního odporu přístrojem Megger MIT1025

Při provádění testu izolačního odporu se na testovaný prvek přivede vysoké stejnosměrné napětí, změří se výsledná hodnota často velice nízkého protékajícího proudu a pomocí Ohmova zákona se vypočítá hodnota izolačního odporu. Porovnáním této výsledné hodnoty izolačního odporu s předem stanovenou kritickou hodnotou se stanoví, zda je měřený prvek bezpečný a provozuschopný.

Kromě toho, pokud se na měřeném prvku provádějí testy izolačního odporu pravidelně, je možné odhalit změny, které upozorní na postupnou degradaci izolačního materiálu. Tímto pravidelným měřením lze předpovědět zbývající životnost izolačního prvku.

Funkčnost všech částí infrastruktury elektrické sítě, od místa výroby přes distribuci až po rozvod u spotřebitele, závisí na účinné izolaci. Trvalá dostupnost provozuschopné elektrické sítě je nesmírně důležitá, takže je zcela zásadní, abychom se mohli spolehnout na získané výsledky z měření izolačního odporu.

Zamysleme se na chvíli nad tím, co se stane, když nebude měření izolačního odporu provedeno s třetí modrou svorkou, ochranným terminálem. Pokud jsou získané výsledky měření nižší než skutečné hodnoty izolačního odporu, mohou být prvky sítě předčasně vyřazeny z provozu, což znamená zbytečnou práci týmu údržby při výměně nákladných prvků. To může znamenat, že je potřeba část sítě vyřadit z provozu na dobu minimálně nutnou pro výměnu. To vše vede k vyšším nákladům na údržbu, nižší dostupnosti sítě a v konečném důsledku také vyšším cenám pro spotřebitele a potenciálně menšímu zisku pro provozovatele sítě.

Abychom tyto nesprávné závěry eliminovali, musíme použít pro měření izolačního odporu takové měřící přístroje, které poskytují přesné a spolehlivé výsledky. Abychom pochopili, co to v praxi znamená, podíváme se z blízka na problematiku měření velmi malých proudů, které testery izolace měří.

Jakmile proudy vznikající při měření, jako je kapacitní nabíjecí proud a absorpční (polarizační) proud, poklesnou v testovaném prvku na zanedbatelnou hodnotu, zůstane nám malý ustálený proud. Ten se skládá ze dvou dílčích proudů:

Unikající proud přes izolační materiál

Svodový proud na povrchu izolace

Pro vlastní vyhodnocení měření používáme svodový proud přes izolační materiál. Ten je směrodatný pro rozhodnutí, zda je měřený prvek i nadále provozuschopný. U určitých typů prvků však může svodový proud na povrchu izolačního materiálu dominovat a to až do té míry, že se nelze na naměřené hodnoty izolačního odporu spolehnout.

Obrázek 2 Měření bez ochranné svorky

Obrázek 2  Měření bez použití ochranného terminálu

Vysokonapěťové kabely, transformátorové průchodky, izolátory a další prvky elektrické sítě, které mají velké povrchové plochy, mohou být znečištěné vzduchem přenášenými nečistotami nebo dokonce tenkým filmem vlhkosti. Toto povrchové znečištění pak vede k významnému povrchovému svodovému proudu, který může výrazně ovlivnit měření skutečného unikajícího proudu přes izolaci.

Na obrázku 2 je znázorněna znečištěná vn transformátorová průchodka. Unikající proud šířící se přes izolační materiál průchodky je zobrazen modře a povrchový svodový proud je zobrazen červeně. V horní části průchodky se tyto dva proudy sčítají a jsou přivedeny do měřícího přístroje. Výsledkem takto provedeného měření je falešně nízká hodnota izolačního odporu.

 

Měřený proud = svodový proud na povrchu izolace + unikající proud přes izolaci

Abychom toto výrazné zkreslení výsledku měření eliminovali, musíme z našich měření odstranit složku svodového povrchového proudu, zvláště pokud měříme prvek s izolačním odporem 100 MΩ nebo více při napětí 1000 V a více. Zde je nutné využít potenciál ochranného terminálu.

Ochranný terminál je třetím bodem připojení k testovanému prvku. Toto připojení umožňuje odvedení svodového povrchového proudu, který jinak může vést k podstatné chybě při měření izolačního odporu.

Obrázek 3 Měření s ochrannou svorkouObrázek 3  Měření s použitím ochranného terminálu

Níže uvedený příklad na obrázku 3 opět ukazuje vn transformátorovou průchodku. Tentokrát je ale povrchový svodový proud odveden pomocí ovinutého vodivého pásku kolem střední až horní části průchodky. Připojením ochranného terminálu k tomuto vodivému pásku se povrchový svodový proud odvede a není pro výpočet izolačního odporu uvažován. Výsledkem takto provedeného měření je pouze skutečný unikající proud izolace resp. izolační odpor.

 

 

Měřený proud = pouze unikající proud přes izolaci

Jednou z výhod ochranného terminálu je, že jej lze použít jako rychlý diagnostický nástroj. Dva snadné testy mohou rychle určit, zda je izolační hodnota prvku skutečně degradující nebo zda je jednoduše znečištěn špínou, a proto vyžaduje řádné očištění. První měření se provádí s pomocí ochranného terminálu a druhé bez jeho použití. Pokud se tyto dvě naměřené hodnoty izolačního odporu dramaticky liší, je zřejmé, že hlavním problémem je znečištění. Ta způsobí, že měření bez ochranného terminálu vykazuje výrazně nižší hodnoty izolačního odporu, než se očekávalo.

Ochranný terminál je také vhodné používat při pravidelném měření izolačního odporu na konkrétním prvku, protože nám pomáhá sledovat trendy. Při měření izolačního odporu prvků totiž existuje mnoho proměnných, které ovlivňují naměřenou hodnotu izolačního odporu. Například elektrický šum a teplota. Když tedy sledujeme hodnoty izolačního odporu v průběhu celého životního cyklu prvku, je nezbytné ochranný terminál používat pro každé měření. Jedině tak totiž můžeme odstranit jednu z proměnných, tj. svodový povrchový proud, který se sám v průběhu času mění v důsledku proměnlivého znečištění a různých úrovní relativní vlhkosti v době testování.

Viděli jsme, že funkční ochranný terminál je základním benefitem vysokonapěťového testeru izolačního odporu. Jedině tak je možné docílit spolehlivých výsledků. Efektivní plánování údržby se opírá o trendy spolehlivých výsledků testů, které poskytují včasnou indikaci blížícího se selhání. Použití vysoce výkonného ochranného terminálu může proto snížit riziko předčasné výměny prvků a zajistit jejich maximální životnost. Týmy údržby pak mohou provádět správnou činnost v nejvhodnějších časech, udržovat náklady na minimu a maximalizovat dostupnost sítě.

Je ale důležité poznamenat, že ne všechny ochranné terminály jsou stejně účinné. U přístrojů od různých výrobců se ve skutečnosti výkon ochranného terminálu velmi liší.

Společnost Megger plně deklaruje výkon svých ochranných terminálů a uvádí jejich přesnost. Na rozdíl od některých jiných výrobců Megger deklaruje přesnost v celém rozsahu výstupního napětí přístroje. Obvody Megger ochranného terminálu jsou navrženy pečlivě. Jedině tak může být zachována jejich nízká vstupní impedance, přesnost přístroje, vysoký stupeň bezpečnosti CAT v souladu s normou IEC 61010 a v neposlední řadě jejich bezpečnost pro případ indukovaných napětí z testovaného obvodu.

Obrázek 4 Jednotka CB101 pro kontrolu výkonu a přesnosti ochranného terminálu

Obrázek 4  Jednotka CB101 pro kontrolu výkonu a přesnosti ochranného terminálu

Výběr správného testeru izolačního odporu může být obtížný. Vzhledem k množství produktů, které jsou dnes k dispozici, je procházení datovými listy časově náročná výzva. S ohledem na to společnost Megger vytvořila neocenitelnou pomůcku, která vám pomůže porovnat výkony jednotlivých měřících přístrojů. Kontrolní jednotka CB101, je zobrazena na obrázku 4 je jednoduchý a bezpečný nástroj, který obsahuje řadu vysoce výkonných rezistorů dimenzovaných pro použití do 5 kV. Pomocí tohoto nástroje můžete rychle a jednoznačně zhodnotit výkon a přesnost ochranného terminálu u jakéhokoliv testeru izolačního odporu.

 

 Společnost Megger je přední světový výrobce měřící techniky již od pozdních let 19. století. V současné době je ochranný terminál součástí testeru izolace MIT2500, který může testovat až napětím 2,5 kV, konče nejvýkonnějším 15kV testerem izolace S1-1568. Nově je ochranný terminál také k dispozici u testeru točivých strojů MTR105.

Pro více informací o námi vyráběné měřící technice navštivte stránky www.megger.cz, nebo náš YouTube kanál Megger CZ s.r.o., kde naleznete i celou řadu video návodů. Pro osobní konzultaci je vám také k dispozici pracovní tým firmy Megger. 

autor: Ing. Jan Bílek, Megger CZ, s.r.o. e-mail:  Tato emailová adresa je chráněna před spamboty, abyste ji viděli, povolte JavaScript  

Na četné žádosti revizních techniků,připravujících se na zkoušky odborné způsobilosti revizního technika na TIČR,jsme připravili dva kurzy prezenční formou,v salonku hotelu OREA Congress Hotel Brno,( dříve hotel Voroněž) Křížkovského ulice.
Cílem kurzu je vysvětlení testových otázek,ke zkoušce revizního technika,uvedených na stránkách www.ticr.eu.
více https://www.elektrotechnici.cz/eshop/kurzy
Z
ástupce Megger se zúčastní tohoto kurzu a podá informace k novým měřicím přístrojům Megger a správnému použití při revizích.