Etm.cz - elektrotechnika on-line

Neděle
8. 12. 2019
rss_logo facebook_logo youtube_logo
Domů

Měřicí senzor nebo konvenční přístrojový transformátor?

Tisk Email
Hodnocení uživatelů: / 0
NejhoršíNejlepší 
Napsal uživatel redakce Etm   
Středa, 14 Červenec 2010 10:38
Typickým elektromechanických zařízením jsou elektromechanická relé, které zastávají jednoduchou ochranou funkci. Tyto relé nenabízejí žádnou možnost kontroly a ovládání, také jsou bez možnosti vzdálené komunikace.
Zavedením mikroprocesorů do reléové techniky přineslo možnost zkombinovat více ochranných funkcí do jednoho přístroje a přineslo možnosti kontroly a podpory komunikačního rozhraní pro vyšší úroveň řízení a monitorování.
Design klasických indukčních přístrojových transformátorů se nijak zásadně nezměnil, technologie a principy jsou stejné. Uživatelé vyžadují funkčnost, která je dobře známá a je v souladu s požadavky pro připojení elektromechanických zařízení. Možnost přizpůsobení proudových a napěťových přístrojových transformátorů moderním elektronickým ochranám nebyly plně pochopeny, je zde proto prostor k jejich dalšímu rozvoji.

senzory_1

Spolu s klasickými indukčními transformátory došlo k vývoji elektronických přístrojových transformátorů (senzorů). Ty jsou navrženy tak, aby poskytovaly stejné funkce, jako klasické indukční transformátory, jejich principy jsou však zcela odlišné.
Elektronické přístrojové transformátory mohou být navrženy buď s nízkou úrovní výstupního signálu vhodnou pouze pro elektronická zařízení nebo jako senzory s další elektronikou, která signál zesílí až na úroveň požadovanou elektromechanickými relé, nebo mohou být navrženy pouze pro převod analogového signálu na digitální určeného k dalšímu zpracování.

Systémy ochran s elektromechanickým zařízením

Dřívější elektromechanická zařízení byly montovány jako součást primárního systému, trochu jako dnešní jištění pomocí pojistek. Tento typ ochran nepotřeboval externí napájení a nebylo potřeba indukčních přístrojových transformátorů.
Provoz druhé generace elektromechanických ochran byl založen na měření střední hodnoty proudu nebo napětí, popřípadě jejich kombinace. Požadavky kladené na indukční přístrojové transformátory, pokud jde o výkon, byly poměrně vysoké vzhledem k provozním požadavkům elektromechanických relé. Typické zatížení proudového měřicího transformátoru se pohybuje v rozmezí 20 - 30 VA při 5A zatížení. Nové elektromechanické ochrany se stále vyrábějí a používají se v mnoha zemích. Jejich robustní konstrukce, jednoduché uživatelské rozhraní, dlouhá životnost a nízké požadavky na údržbu jsou jejich velkou předností.
V zhledem k nízkému výstupnímu signálu, není možné elektronické přístrojové transformátory připojit k elektromechanickým ochranám. Elektromechanické ochrany obvykle nemají vlastní napájení a proto vyžadují napájení skrz klasické indukční měřicí transformátory. Rozsáhlé využití elektronických měřicích transformátorů nastalo až s příchodem mikroprocesorové techniky.

Systémy ochran s mikroprocesorovým zařízením

Zavedením mikroprocesorů do relé došlo k potřebě zavedení kontrolních funkcí a umožnit následnou komunikaci. Využití procesorů nabízí nevídané možnosti a ohromnou početní sílu, díky čemu je možné získat celou řadu ochranných funkcí v jednom relé.
Možnost komunikace s relé vedla k přirozenému vývoji kombinovaných kontrolních funkcí jako součást ochranných relé. Zrodil se nový koncept - mikroprocesorový napájecí terminál. Ten nabízí programovatelné ochranné funkce, ovládání primárního zařízení, vlastní kontrolu a kontrolu primárního zařízení.
Výkon potřebný pro napájení mikroprocesorových napájecích terminálů je podstatně nižší než pro napájení elektromechanických relé. Typické zatížení proudového transformátoru je v rozmezí 0,05 - 0,5 VA při 1A zátěži.
Využití elektronických měřicích transformátorů umožňuje větší zjednodušení a zmenšení celé aplikace. Díky tomu dochází i ke snížení nákladů systému.

Základní principy elektronických přístrojových transformátorů

Proudové elektronické přístrojové transformátory

Pracují na principu Rogowského cívky, což je v přeneseném slova smyslu přesný lineární senzor proudu pro přesné měření ve velkém rozsahu. Prakticky jde o toroidní cívku bez železného jádra (vzduchovou cívku) umístěnou kolem primárního měřeného vodiče stejným způsobem jako sekundární vinutí měřícího proudového transformátoru. Na rozdíl od něj však výstupní signál z Rogowského cívky není proud, ale napětí. Díky absenci železného jádra nemůže dojít k saturaci.

senzory_2
Obr. 1 Rogovského cívka

Napěťové elektronické přístrojové transformátory

Princip je založen na odporovém nebo kapacitním děliči s převodem 10 000 V : 1 V. Tyto senzory se vyznačují linearitou v celém měřicím rozsahu. Výstupní napětí je přímo úměrné vstupnímu měřenému napětí na primáru. Tvar senzoru je speciálně navržen tak, aby minimalizoval parazitní účinky (kapacitu a indukci).

senzory_3
Obr. 2 Odporový dělič napětí

Kombinované elektronické přístrojové transformátory

Malé rozměry proudových a napěťových senzorů dovolují výrobu i kombinovaných senzorů kompaktních rozměrů.V jednom těle je obsažen proudový a napěťový senzor. Zákazník touto volbou ušetří kolem několik desítek procent nákladů na pořízení a následnou instalaci.

Porovnání klasických indukčních a elektronických přístrojových transformátorů

Absence železných jader v elektronických přístrojových transformátorech umožňuje dosáhnout významného snížení velikosti a tak snadno dosáhnout kombinovaného měření napětí a proudu v jednom těle. Jednoúčelové elektronické přístrojové transformátory mohou být o polovinu menší, než klasické indukční přístrojové transformátory. Již zmiňovaná absence železného jádra a velkých cívek s výrazným podílem mědi vede k velmi nízké hmotnosti. Díky tomu je v rozváděči více místa a celý rozváděče je lehčí, bez ohledu na aplikaci. Možnost vysokého zatížení a zanedbatelné ztráty pak hrají významný přínos ve spotřebě těchto zařízení.
Srovnání celkových nákladů u proudovém transformátoru (600/5/5A, 25VA, cl. 0,5, 5P20) a proudového senzoru je na následujícím obrázku.

senzory_4
Obr. 3 Srovnání celkových nákladů při použití klasického a elektronického přístrojového transformátoru

U porovnání se předpokládá, že indukční proudový transformátor pracuje na svém jmenovitém proudu a jmenovitém zatížení po dobu životnosti 30 let. Jak je vidět, spotřebovaná a rozptýlená energie je během celé životnosti výrazně vyšší než u elektronického přístrojového transformátoru.

Trendy a budoucnost

Elektronické přístrojové transformátory dnes nepokrývají veškeré potřeby zákazníků. Proto se v blízké budoucnosti předpokládá využití obou technologií s rostoucí převahou využívání elektronických přístrojových transformátorů.
Pokud by chtěl zákazní použít konvenční přístrojový transformátor s mikroprocesorovou ochranou, měl by zvlášť dbán na to, aby správně definoval požadované parametry. V mnoha případech uživatelé jednoduše nahradí starý přístrojový transformátor za nový se stejnou specifikací, ale skutečná kritéria moderních ochran jsou odlišná. Přístrojový transformátor pak nemusí plnit správnou funkci a zvyšuje se riziko poruchy.
Použití elektronických přístrojových transformátorů představuje velmi přínosnou volbu. Neexistuje žádné riziko poruch, technologie je navržena tak, aby ji bylo možné napojit na moderní mikroprocesorové ochrany s možností komunikace. Rostoucí zkušenosti a využívání elektronických přístrojových transformátorů přináší kladné odezvy ze stran uživatelů, což podporuje jejich rozvoj a přináší další možnosti využití.
Největší zkušenosti s výrobou elektronických měřicích transformátorů má bezesporu společnost ABB, ta začala s hromadnou výrobou jako první a to již před více jak 15 lety. Díky tomu dosáhla technologického náskoku a vedoucího postavení na trhu.

Zdroj:
• Javora, R., Váňo, P. - Design of Transducers Matching Requirements of Microprocessor-Based Equipment: Electric power engineering, 2010, 431 - 436 s.
• ABB s.r.o. - Current and Voltage Sensor: Technical guide no. 1VLC000579, 2003

 
cez banner 300x300

ČD Telematika

banner_eltech

zbrojovka

balluff_logo_cmyk_pos



detektor_centrala_banner_300x90

Buďte stále v obraze:

Chci odebírat novinky


+